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Abstract

It is known that binary words containing no k consecutive 1s are enumerated by
k-step Fibonacci numbers. In this note we discuss the expected value of a random
bit in a random word of length n having this property.

1 Introduction
For n ⩾ 0 and k ⩾ 2, we denote by Bn(1

k) the set of length n binary words avoiding k
consecutive 1s. For example, we have

B4(11) = {0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010}, and
B4(111) = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 1000, 1001, 1010, 1011, 1100, 1101}.

It is well known, see Knuth [12, p. 286], that Bn(1
k) is enumerated by the k-step Fibonacci

numbers, precisely |Bn(1
k)| = fn+k,k, where fn,k is defined, following Miles [14] as

fn,k =


0 if 0 ⩽ n ⩽ k − 2,

1 if n = k − 1,∑k
i=1 fn−i,k otherwise.

Denote by vn,k the frequency (also called popularity) of 1s in Bn(1
k), i.e. the total

number of 1s in all words of Bn(1
k). For instance, v4,2 = 10 and v4,3 = 22. The ratio of

frequency of 1s to the overall number of bits in words of Bn(1
k) is

αn,k =
vn,k

n · |Bn(1k)|
,

and it equals the expected value of a random bit in a random word from Bn(1
k). In [2],

the authors left without proof the fact that, for any k ⩾ 2, limn→∞ αn,k converges to a
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non-zero value as n grows. This note is devoted to proving this fact, which apart from its
interest en soi has practical counterparts. Indeed, words in Bn(1

k) play a critical role in
some telecommunication frame synchronization protocols, see for example [1, 3, 5], or in
particular Fibonacci-like interconnection networks [8].

Our discussion is based on the bivariate generating function

Fk(x, y) =
∞∑
n=0

n−⌊n
k⌋∑

m=0

an,mx
nym

whose coefficient an,m equals the number of words from Bn(1
k) containing exactly m 1s.

For k = 2 and k = 3, Table 1 presents some values of an,m for small n and m.

m\n 1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8 9
2 1 3 6 10 15 21 28
3 1 4 10 20 35
4 1 5 15
5 1

m\n 1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8 9
2 1 3 6 10 15 21 28 36
3 2 7 16 30 50 77
4 1 6 19 45 90
5 3 16 51

Table 1: First few values of an,m for k = 2 (left) and k = 3.

2 Main result
Proposition 1 gives the expression of the generating function Fk(x, y). Even though this
result is already obtained in [2], in order to make the paper self-contained we give an
alternative proof of it. Then we calculate the generating functions for the frequency of
1s and for the overall number of bits in Bn(1

k) by means of classic generating functions
manipulations (Propositions 2). Applying Theorem 4.1 from [16], after ensuring that its
conditions are satisfied, we obtain the main result of this note, Theorem 1. The evolution
of the random bit expectation for k = 2 and k = 3 is presented on Figure 1 for small
values of n. And numerical estimations for the limit value (n → ∞) of the random bit
expectation, for small values of k are given in Table 2.

Proposition 1 ([2]).

Fk(x, y) =
y
(
1− (xy)k

)
y − xy2 − xy + (xy)k+1

.

Proof. The set B(1k) =
⋃∞

n=0 Bn(1
k) respects the following recursive decomposition

B(1k) = 1k−1 ∪

(
k−1⋃
i=0

(
1i0 · B(1k)

))
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Figure 1: Expected value of a random bit in a random word from Bn(1
2) (left) and Bn(1

3)
for small values of n.

where 1k−1 =
⋃k−1

i=0 {1i} is the set of words in B(1k) containing no 0s, and · denotes the
concatenation. Note that the empty word also lies in 1k−1. The claimed generating
function is the solution of the following functional equation

Fk(x, y) =
k−1∑
i=0

xiyi + Fk(x, y)
k−1∑
i=0

xi+1yi.

In the proof of Theorem 1 we need the following easy to derive results.

Proposition 2.

• Pk(x) = ∂Fk(x,y)
∂y

|y=1 is the generating function where the coefficient of xn is the
frequency of 1s in Bn(1

k). We have

Pk(x) =
x ·
∑k−2

i=0 (i+ 1)xi

(xk + xk−1 + · · ·+ x2 + x− 1)2
.

• Tk(x) = x∂Fk(x,1)
∂x

is the generating function where the coefficient of xn equals the
total number of all bits in Bn(1

k). We have

Tk(x) =
x
(∑k−2

i=0 (2i+ 2)xi +
∑2k−2

i=k−1(2k − i− 1)xi
)

(xk + xk−1 + · · ·+ x2 + x− 1)2
.

Every root r of a polynomial h(x) of degree n with a non-zero constant term corresponds
to the root 1/r of its negative reciprocal −xnh(1/x). The denominator of both Pk(x)
and Tk(x) involves xk + xk−1 + · · · + x2 + x − 1 and its negative reciprocal is xk −
xk−1 − · · · − x2 − x − 1 which is known in the literature as Fibonacci polynomial, see
for instance [6, 7, 9, 10, 11, 13, 14, 15, 19] and references therein. In particular, Dubeau
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k Limit of the expected bit value

2 0.276393202250021
3 0.381580077680607
4 0.433657112297348
5 0.462073883180840
6 0.478227505713290
7 0.487545982771861
8 0.492928265543398
9 0.496019724266083
10 0.497779940783496
11 0.498772398758879
12 0.499326557312936
13 0.499633184444604

Table 2: Numerical estimations for the limit of the expected value of a random bit in a
random word from Bn(1

k), n → ∞.

proved [7, Theorem 1] that its root of the largest modulus is φk = limn→∞ fn+1,k/fn,k, the
generalized golden ratio, and φk approaches 2 when k → ∞ [7, Theorem 2]. Wolfram [19,
Lemma 3.6] showed that any other root r of the Fibonacci polynomial satisfies 3−1/k <
|r| < 1. See Figure 2 for an illustration of this fact. Moreover, Corollary 3.8 in [19]
proves that Fibonacci polynomial is irreducible over Q. In order to refer later to them we
summarize these results in the next proposition.

Proposition 3. The polynomial gk(x) = xk +xk−1+ · · ·+x2+x− 1 is irreducible over Q,
its root of the smallest modulus is unique and equal to 1/φk.

The next lemma says that both fractions representing Pk(x) and Tk(x) are irreducible.

Lemma 1. The polynomials
∑k−2

i=0 (i+ 1)xi and xk + xk−1 + · · ·+ x2 + x− 1 are relatively
prime; and so are

∑k−2
i=0 (2i+2)xi +

∑2k−2
i=k−1(2k− i− 1)xi and xk + xk−1 + · · ·+ x2 + x− 1.

Proof. The polynomial xk + xk−1 + · · ·+ x2 + x− 1 is irreducible due to Proposition 3.
It does not divide

∑k−2
i=0 (i + 1)xi as it has a greater degree. And it also cannot divide
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Figure 2: Roots of the polynomial xk − xk−1 − · · · − x2 − x− 1 (the negative reciprocal of
gk(x)) for certain values of k.

∑k−2
i=0 (2i + 2)xi +

∑2k−2
i=k−1(2k − i − 1)xi as the latter does not have any positive real

roots.

From Propositions 2, 3, Dubeau’s results [7], and Lemma 1 we have:

Lemma 2. Both generating functions Pk(x) and of Tk(x) have the same and unique
pole of the smallest modulus with multiplicity 2. The pole equals 1/φk, where φk is the
generalized golden ratio.

For our main result of this note we need the Theorem 4.1 from [16]:
Theorem 4.1 from [16]. Assume that a rational generating function f(x)

g(x)
, with f(x) and

g(x) relatively prime and g(0) ̸= 0, has a unique pole 1/β of the smallest modulus. Then,
if the multiplicity of 1/β is ν, we have

[xn]
f(x)

g(x)
∼ ν

(−β)νf(1/β)

g(ν)(1/β)
βnnν−1.
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Both Pk(x) and Tk(x) are rational generating functions, and by Lemmas 1 and 2 they
fulfill the conditions in the above theorem, so

[xn]Pk(x) ∼ 2nφn+2
k ·

x
(∑k−2

i=0 (i+ 1)xi
)

(
(xk + xk−1 + · · ·+ x2 + x− 1)2

)′′
∣∣∣∣∣
x=1/φk

[xn]Tk(x) ∼ 2nφn+2
k ·

x
(∑k−2

i=0 (2i+ 2)xi +
∑2k−2

i=k−1(2k − i− 1)xi
)

(
(xk + xk−1 + · · ·+ x2 + x− 1)2

)′′
∣∣∣∣∣
x=1/φk

.

The expected value of a random bit in a random word from Bn(1
k) is [xn]Pk(x)

[xn]Tk(x)
. Taking the

limit, we obtain:

Theorem 1. The expected value of a random bit in a random word from Bn(1
k) tends to

kxk − kxk−1 − xk + 1

kxk − kxk−1 + x2k − 3xk + 2

∣∣∣∣
x=1/φk

when n → ∞,

where φk = limn→∞ fn+1,k/fn,k is the generalized golden ratio, in particular φ2 is the
golden ratio.

See Table 2 for some numerical estimations of the result obtained in the previous
theorem. This result involves the generalized golden ratio. More than 20 years ago it was
conjectured by Wolfram [19] that the Galois group of the polynomial xk − xk−1 − · · · −
x2 − x− 1 is the symmetric group Sk, and so there is no algebraic expression for φk (the
root of the largest modulus of this polynomial) when k ⩾ 5. In case of even or prime
k the conjecture was settled by Martin [13]. Cipu and Luca [6] showed that φk cannot
be constructed by ruler and compass for k ⩾ 3. Nevertheless, good approximations are
available, for instance Hare, Prodinger and Shallit [11] expressed φk and 1/φk in terms of
rapidly converging series.

The generalized golden ratio φk tends to 2 as k grows, and we deduce the following.

Corollary 1. The limit of the expected bit value of binary words avoiding k consecutive
1s, whose length tends to infinity, approaches 1/2 as k grows:

lim
k→∞

lim
n→∞

vn,k
n · |Bn(1k)|

=
1

2
.

Finally, note that other sets of restricted binary words are counted by the generalized
Fibonacci numbers, for instance q-decreasing words [2] for q ⩾ 1. In this case every length
maximal factor of the form 0a1b satisfies a = 0 or q · a > b. Theorem 1 and Corollary 1
apply to this case (with the same limit, see [2, Corollary 5]) by setting k = q + 1.
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